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The problem of nonlinear wave-wave interactions is reformulated, in a Eulerian 
framework, for two classical geophysical systems : barotropic Rossby waves and 
internal gravity waves on a vertical plane. The departure of the dynamical fields from 
the equilibrium state is expanded in the linear-problem eigenfunctions, using their 
properties of orthogonality and completeness. The system is then completely de- 
scribed by the expansion amplitudes, whose evolution is controlled by a system of 
equations (with quadratic nonlinearity) which is an exact representation of the original 
model equations. There is no a priori need for the usual multiple-time-scale analysis, 
or any other perturbation expansion, to develop the theory. These or other approxi- 
mations (like truncation of the expansion basis or the Boltzmann equation for a 
stochastic description) can, if desired, be performed afterwards. 

The evolution of the system is constrained mainly by the conservation of energy E 
and pseudo-momentum P, properties related to time and space homogeneity of the 
model equations. Conservation of E and P has, in turn, some interesting consequences: 
(a) a generalization of Fjortoft’s theorem, (b) a class of exact nonlinear solutions 
(which includes the system of one single wave), and (c) conservation of E and P in 
an arbitrarily truncated system (which is useful in the development of approximations 
of the problem). 

The properties of all possible resonant triads are shown and used to estimate the 
order of magnitude of off-resonant coupling coefficients. 

The results are used in two different problems: the stability of a single wave (maxi- 
mum growth rates are evaluated in both the strong- and weak-interactions limits) 
and the three-wave system. The general solution (for any initial condition and for 
both the resonant and off-resonant cases) of the latter is presented. 

1. Introduction 
There is a growing interest in understanding the mechanism of nonlinear wave- 

wave interactions in geophysical fluids. This is evident in the number of recent papers 
devoted to this problem, in both deterministic (e.g. Orlanski & Cerasoli 1980) and 
stochastic (e.g. Holloway & Hendershott 1977; McComas & Bretherton 1977) systems. 

Most studies of nonlinear wave-wave interactions are based on a perturbation 
expansion in a ‘small ’ parameter, which is taken to be some sort of overall normaliza- 
tion of the wave amplitudes. This expansion, in time, requires a multiple time-scale 
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analysis, due to the existence of resonant interactions. The algebra to develop the 
theory in this way is in most cases quite cumbersome and, as a consequence, the 
expansion is usually performed up to the first nonlinear order. Moreover, this expansion 
is clearly not very useful if one were to use the theory with finite amplitude 'waves' 
(for instance, to study the transition between wave and turbulent regimes). 

It will be shown here that, for many geophysical systems, it is not necessary to 
perform this perturbation expansion. The nonlinear evolution equation can be easily 
obtained from the Eulerian model equations and is an exact representation of the 
latter. The method is based on the orthogonality and completeness of the linear- 
problem eigensolutions, which follow from the hermiticity of the model equations. 
The conservation of energy and pseudo-momenta and its consequences are explicit 
m this formalism. Finally, any approximation (like the multiple time-scale/pertur- 
bation expansion or the Boltzmann stochastic equation) can, if desired, be performed 
aposteriori. 

The author has applied this study to several geophysical systems. In this paper are 
presented the results for the problems of barotropic Rossby waves in the mid-latitude 
beta-plane (BRW) and internal gravity waves on a vertical plane (IGW). The pro- 
perties of both systems are studied ' in parallel ', in order to stress their formal similarity. 
Other cases studied are equa$orial waves (Ripa 1 9 8 0 ~ )  and 3-D inertia-gravity/ 
planetary waves on the beta-plane and on the sphere (Ripa 1980b). 

Section 2 is devoted to the description of the Eulerian model equations and con- 
servation laws. The notation and main results are summarized in table 1. The wave 
expansion and the corresponding evolution equation are developed in Q 3. The kine- 
matic (wavenumbers and frequencies) and dynamic (interaction coefficient) properties 
of all possible resonant triads are shown in Q 4 and used to estimate the magnitude of 
the coupling coefficients of the off-resonant triads. 

The results of these three sections are applied, in $ 5 ,  to two simple nonlinear 
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problems: the stability of a single wave (both in the strong- and weak-interactions 
limits) and the study of the three-wave system. The latter problem may be taken as 
a first step in the understanding of nonlinear wave-wave interactions (Bretherton 
1964). Furthermore, the same set of equations appears in other nonlinear systems 
(for example, capillary-gravity waves in a three-layer fluid, Craik t Adam 1979). 
McGoldrick (1966) found a particular solution of the resonant three-wave problem, 
that is often quoted in the literature. The general solution (for any initial condition 
and valid for both resonant and off-resonant cases) is presented here, along with a 
description of its characteristics. The solution is also valid (in a different range of the 
parameters) for ‘explosive’ systems like that of Craik & Adam (1979). Details of the 
algebra are given in the appendix. Finally, Q 6 is devoted to general discussion. 

2. Model equations and conservation laws 
Two different geophysical systems, Bartotropic Rossby Waves (BRW) and Internal 

Gravity Waves (IGW), are considered in this paper. Their properties are discussed 
‘ in parallel ’ in order to stress their formal similarity, in spite of the fact that they are 
quite different physical systems. The notation, model equations and conservation 
laws are summarized in table 1.  

For BRW, i.e. quasi-geostrophic flow in a one-layer model, (Longuet-Higgins & 
Gill 1967), z and y are the zonal and meridional position co-ordinates, f( = fo +By) is 
the Coriolis parameter and K ,  ( = f o / J ( g ’ H ) )  is the inverse of the deformation radius 
where H is the mean depth of the layer and g’ is effective gravity. The model equation 
expresses the conservation of the potential vorticity ( E + f )  following a fluid column. 
This layer can be thought to be between two deep layers with no horizontal motion. 
Depending on the density ratio of the three layers, this system may be taken as de- 
scribing quasi-geostrophic flow in either the external (9’ = g )  or one of the internal 
(9‘ < g )  vertical modes, under the approximation of neglecting the interactions of 
this mode with the others (Ripa 1980b). 

For IGW on a vertical plane (Orlanski 1973), z and y are the horizontal and vertic’al 
position co-ordinates, N is the Brunt-VBisalB frequency (taken as constant) and p is 
the total density divided by the mean (over the entire plane) density. The model 
equations express the conservation of density and the changes of vorticity due to the 
sloping of the isopycnals. 

Particular attention is paid to the effect of nonlinear terms in the free evolution of 
the system, thereby excluding any external forcing. Likewise, boundary effects are 
not considered, formally taking the space domain as unbounded and requiring the 
dynamical fields to be bounded at infinity. 

The evolution of the system is constrained by the existence of several conservation 
laws (see table 1).  First, each fluid parcel conserves its potential vorticity (density), 
in the case of BRW (IGW). Using incompressibility, this law can be shown to be 
equivalent to the existence of infinite integrals of motion, namely the functionals 
A[F] ,  where F is any function of the potential vorticity (density). In  addition to the 
A[F] ,  there are two more integrals of motion: the energy E and the momentum U. 
The angle brackets in the equations of table 1 are proportional to the integration 
over the entire space, for example, for some initial conditions they may be defined 
as the integral itself, (...) = J‘dx ..., (2.1) 
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whereas in some other cases it is better to define them as the average 

<. . .> = lim udx .../$a XI, (2.2) 

with the limit taken as the domain of both integrations tends to infinity. 
The energy E is a quadratic functional of the dynamical fields and the consequences 

of its conservation are quite straightforward in an expansion formalism such as the 
one that is developed in the following section. The momentum U and the A’s are, 
though, linear (to lowest order) functionals of the dynamical fields, and the conse- 
quences of their conservation are more obscure, especially in a framework such as 
that of $ 3. However, there is one (and only one) combination of U and the A’s which 
is quadratic, namely the pseudo-momentum along the x-direction, 

P = U+A[F,],  (2.3) 

where 3’’ = - (6+f)2/2/3(F0 = gp/N2) for BRW (IGW). 
The pseudo-momentum P should not be confused with the momentum U, as was 

clearly pointed out by Andrews & McIntyre (1978). For instance, under the Galilean 
transformation z + z+ U‘t, it  is (using the definition ( 2 . 2 ) )  E + E +  UU‘ + const., 
U + U + U’ but P + P, as can be easily proved from the expressions in table 1. 

E and P are the only integrals of motion of the fully nonlinear systems which are 
quadratic in the departure from the equilibrium state. For BRW, P is negative 
definite, whereas for IGW, P may have either sign. It will be shown in $ 3  that con- 
servation of E and P has several interesting consequences on the nonlinear evolution 
of the system. 

Milder (1976) proposed a different quantity (quadratic and positive definite) as a 
measure of IGW saturation, noting that it is an integral of motion in the linear 
problem. However, it is easy to  show (see $ 5 )  that nonlinear interactions (even the 
resonant ones) violate the conservation of this quantity, and therefore its physical 

. meaning is not very clear. 
The expression for the pseudo-moIm$tum in terms of the Eulerian variables is 

quite different for both systems: P is proportional to the mean of the square of the 
perturbation of potential vorticity (usually called enstrophy) for BRW, and to 
the correlation between vorticity and density perturbation for IGW. However, in the 
expansion formalism developed in the following section, P has the same expression 
in both systems. This does not happen, obviously, by chance. It can be shown that P 
is related to the invariance of both systems under translations along 2. 

If the evolution equations of a certain continuous system can be derived from a 
variational principle, then the integrals of motion and symmetries of the problem 
can be related using Noether’s theorem (see Gelfand & Fomin 1963, p. 177). For the 
problems of this paper, this can be done in the Lagrangian description of the system, 
that is, using as dependent variables the position of the fluid particles 

x = x(x’, t ) ,  

where the label x’ is taken to be the equilibrium position. The details of the derivation 
of the conservation laws from the symmetries of the systems will be presented else- 
where (Ripa 1980b). Only the final results are presented below. 

(a) Time homogeneity (i.e. the fact that a solution of the problem translated in t 
is also a solution) is related to conservation of energy. 
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BRW IGW 

k = K(cos 0, sin 0) Wavenumber 
8 = k/w = (8 ,8  tan 0) Slowness 

KIN 

D ynamical 
variables 

%-slowness 

W ( K ,  0) -/3K COB 0II' N cos e Eigenfrequency 

$(K,  0) I-1exp (ik. x) ( 4 2  K)-1 (a') exp (ik . x) Eigenfunction 

Up 2 .  k, x kk(IJJk)-l 4 2  sin t(e, - 8 j) sin ace - 0,) coupling 
x (q-q) x sin 4(Ok - 0,) (K, - K,) coeffioients 

r rc ( 8 : - 8 ~ )  (1 -B-1PR/8 i )~+  - 8 4  c sin et X8, Interaction 
coefficients 

TABLE 2 

( b )  The system is invariant under a general (volume preserving) change of the label 
x'. This results in the conservation of potential vorticity (density) for BRW (IGW). 

(c) The conserved particle property mentioned above can be used to define one of 
the equilibrium co-ordinates, say y', for all fluid elements. Incompressibility can then 
be used to calculate the other equilibrium co-ordinate, x', up to an arbitrary function 
of y'. This symmetry yields the conservation of the functionals A [ P ] .  The particular 
one of (2.3) (i.e. A[F,] = P- U )  corresponds to a rigid translation of the equilibrium 
co-ordinate x' for all fluid particles. 

( d )  Finally, the system is invariant under a rigid translation along the position co- 
ordinate x. This symmetry yielda conservation of 2 U - P. 

Note that x-homogeneity is responsible for the existence of the integrals of motion 
in both (c) and (d), for example, for the conservation of both the momentum and the 
pseudo-momentum. Conservation of U or P alone is related to simultaneous trans- 
lations in x and x'. 

A pseudo-momentum (quadratic, to lowest order) is then expected to be conserved 
along each homogeneous co-ordinate of any geophysical fluid system. For the systems 
discussed in this paper, the y-co-ordinate is not homogeneous (this can be seen in the 
expressions of the conservation laws), even though i t  does not appear explicitly in 
the model equations used. 

3. The wave expansion 
Let #(x, t )  be a (vector) field that groups the dynamical variables, defined in such 

a way that the reference state is given by # = 0 (see table 2). The model equations 
(table 1 )  can be written in the form 

where 
(a,+v.V) D$-L# = 0,  

D = PR- A (BRW), 

4 F L M  103 
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and 
 pa, (BRW), 

0 1  
L = N (1 o) a, (IGW). 

The operator D is hermitian and L is skew-hermitian, i.e. 

(v:Dv,) = { V ? p < ) * ,  (ViLV,) = --{ViLK)*, (3.2) 

where V,(x) and G(x) are any two (complex) vector fields in the same space as 4, t 
denotes transpose and complex conjugate and * means complex conjugate. In addi- 
tion, D is positive definite. These properties imply that the eigenvalues o, of the 
equation 

are real and that the eigenvectors Qa(x) corresponding to different eigenvalues are 
D-orthogonal. In fact, all eigenvectors can be D-orthonormalized, i.e. 

(L  + i ~ ,  D)  #,(x) = 0 (3.3) 

D$b(x))  = b) ,  (3.4) 

E = H V D Q ) ,  (3.5) 

where 6(a, b )  = 0 if a =# b. Note that 

i.e. the energy integral defines the metric in the space spanned by the 
The basis ($3 is also complete, namely 

z Qu(X) D Q W  = I W  - u), 
a 

where I is the unit matrix in the space of the components of Q and 

Zf (4  a@, b )  = f (b ) .  
U 

This basis can then be used to expand the dynamicel fields in the form 

Q(x, t )  = C, za(t) #,(XI,  

ZU(t) = <Qh(x) D Q k  4). 

a 
where, using (3.4), it is 

This way, the state of the system is described in terms of the expansion amplitudes 
ZJt) instead of the dynamical fields #(x,t). The evolution equation is obtained by 
replacing (3.7) in (3.1),  and using (3.3) and (3.4), which results in 

where the dot means time derivative, and 

= - (@a(vb .  V D#c 4- Vc . VD#,) *). (3.10) 

Equation (3.9) is the fundamental one of this paper. The eigenvaluest w, characterize 
provide for the 

t The w ,  are frequencies strictly only in the linear problem. For the nonlinear case, the o, 

the linear evolution of the system, and the coupling coefficients 

should be taken as constant coefficients. 
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is the projection into of the advection nonlinear effects. The physical meaning of 
of q5c by the velocity field of q5b, plus the advection of q5b by the velocity field q5c. 

Two points should be clarified about the summations in (3.7) and (3.9). 
( 1 )  Since D and L are real, if ($a, oa) is a solution of (3.3), then ($2, - wa) is also a 

solution. The latter solution is called the ‘conjugate’ of the former, and labelled by a*. 
Solutions a and a* are mathematically independent, but they represent the same 
physical state, because the reality of q5 requires Za.(t) = Za(t)*; a condition which is 
obviously satisfied by the definition (3.8) and preserved by (3.9). 

(2) Since D and L are independent of x, one might look for solutions of (3.3) with 
an exp (ik. x) spatial dependence. The label ‘a’  may be written in the form a = (k, m), 
where m is a discrete index that runs over the solutions of (3.3) for each k (one for 
BRW and two for IGW). Consequently, it  is 

&(u,u‘) = ( 2 ~ ) ~ & ( k - k ’ ) & ~ ~ ~ ,  

and the (. . .) have the meaning defined in (2.1). 
However, for many problems (such as the ones discussed in 0 5) the field q5 can be 

initially (and, consequently, a t  all times) expanded in terms of a denumerable set of 
components. For these problems, X a  is a discrete summation, &(a, a‘) is Kronecker’s 
delta, and (. , .) is taken in the sense of (2.2). The 2’s and the d s  have then dimensions 
of velocity and wavenumber. Any coupling coefficient, say a:, vanishes unless 

k,+kb+k, = 0. (3.11) 

The coupling coefficients for the continuous case, on the other hand, are equal to those 
of the discrete case times (27r)2 B( k, + k, + k,). 

The expressions for the eigensolutions and coupling coefficients (normalized in the 
sense of (2.2)) for BRW and IGW are shown in table 2. The coupling coefficients are 
clearly symmetric under a permutation of the two upper indices. Furthermore, the 

have been normalized so that the d s  are real. Therefore, there are three real coupling 
coefficients associated to each triad of interacting (i.e., that satisfy (3.1 1)) components. 

Instead of (k, m),  a = ( K ,  0 )  is used here, where 0 varies between 0 and 2n, and K 
(defined so that J K (  = lkl) is always positive for BRW but it has the sign of the 
horizontal phase speed for IGW (the two signs accounting for the two values of m).  
For instance, the ‘conjugate’ state (with -k  and - w )  corresponds to the label 

is indeed complete because there are as many eigensolutions 
for each k as q5 has components. Therefore, there are no extra terms on the right-hand 
side of (3.7) and (3.9); the latter being an ezmt representation of (3.1). In  fact, it  is 
necessary that the eigensolutions of (3.3), including the zero-frequency ones, expand 
a cofnplete basis even for the linear problem to be fully solvable in a wave-expansion 
formalism. 

Consequently, there is no need of a perturbation expansion (nor any assumption 
on the magnitude of the 2,) or transformation of the set (3.1) to a higher-order (in a,) 
equation, in order to obtain the nonlinear wave equations (3.9). Any approximation 
to the problem (e.g. truncation of %he expansion basis) can be done afterwards. In 

a* = (K,e+n).  
Note that the basis 

4 -2 
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particular, if a stochastic description of the system is adopted, the Boltzmann equa- 
tion (Hasselmann 1967; Holloway & Hendershott 1977) can be deduced from (3.9) 
without any need of a Hamiltonian formulation. 

Furthermore, the expression (3.10) for the evaluation of the coupling coefficients 
is very simple. The particular form of the quadratic term in (3.1) is not important in 
obtaining (3.10); the only crucial property is the orthogonality condition (3.4) that 
follows from the hermitian properties of D and L - (3.2). 

Although the Lagrangian framework is useful to relate symmetries and integrals 
of motion, it is inadequate to obtain a nonlinear wave equation such as (3.9) for the 
following reasons. (a) The Lagrangian model equations are second order in time and 
not in self-adjoint form (and thus there is no equivalent to (3.2)); (b) Nonlinearities 
are of higher order. 

The basis {#,} is not only complete, but it also yields an additive representation of 
both E and P, namely 

E = x i  E,, P = E's,E,, (3.12) 
a a 

where E, = IZala, s is the x-component of the slowness vector? (Hayes 1974, p. 12) 

s = k/w, (3.13) 

and the prime indicates summation over physically different states, i.e. either a or 
a* for each conjugate pair (a,a*). If the expansion (3.7) is made with a different 
(complete) basis, not only will the frequency term in (3.9) no longer be diagonal, but 
there would also be double summations in (3.12). In  this sense, the (9,) might be 
considered the natural basis to expand the system. 

The rate of change of the energy of a particular component is given (taking twice 
the real part of (3.9) multiplied by 2;) by the equation 

&a = x eRe(ZaZ,Zc), (3.14) 

from which it is easy to show that necessary and sufficient conditions for the conser- 
vation of E and P are that the coupling coefficients related to any interacting triad, 
say (ah) = (123), satisfy 

be 

a;3+41+43" = 0, 

81 a?3 + 82 4' + 83 4:' = 0. (3.15) 

This is clearly true for those of table 2 because they are of the form a? .I. sb -a, 
(dc = 123 + cp). 

Some interesting consequences can be derived, in this formalism, from the laws of 
conservation of E and P. 

(1) The ratio PIE is a weighted average of the {.sa}, with weights proportional to 
the individual energies. Therefore, any flux of energy toward, say, larger s,, must be 
balanced by an energy flux toward lower 8,. This is a generalization of Fjortoft's 
well-known theorem for BRW (for which the statement obviously holds replacing 
'8,' by ' I k,l', as can be seen in table 2). 

(2) Equations (3.15) imply that if sb = sC then o$ = 0. Therefore, if the initial 

t In a multi-dimensional space it is better to work with s rather than with the phese speed. 
For instance, the Doppler-shifted frequency for an observer with velocity U is w(  1 - 8 .  U) and 
the phese speed in the direction of a unit vector 6 is 11s. 6 and not 6 , kw/k8.  
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FIGURE I. Resonant triads of non-divergent Barotropic Rossby waves, in the (a,,a,) plane (see 
definition triangle on figure). The region shown corresponds to K ,  < K ,  < KI.  The eastward 
direction (for the vectors) is to the right. All possible resonant triads are obtained by changing the 
scale of the vectors or changing the sign of the three northward components. 

expansion of 4 involves only components with the same value of s, then the right-hand 
side of (3.9) vanishes identically (at all times). Consequently, any combination of 
linear waves with the same phase speed along x and arbitrary amplitudes (in particular, 
one single wave) is an exact solution of the full nonlinear problem. More explicitly, a 
streamfunction of the form $ = P(t - sx, y )  (BRW and IGW) and isopycnal elevation 
7 = - s$ (IGW) is an exact nonlinear solution provided that A$ = (/% + K k )  $ (BRW) 
or A$ = -s2N2$ (IGW). 

(3) Equations (3.15) also imply that E and P are also conserved in any ‘approxi- 
mate’ system obtained by an arbitrary truncation of the expansion basis in (3.7), as 
long as all corresponding terms in (3.9) are kept. 

Finally, (3.15) can be used to determine the relative value of the coupling coefficients 
of any interacting triad; their order of magnitude is discussed at the end of the following 
section. The first of equations (3.15) implies that, for a given triad, one of the three 
u’s has a sign opposite to that of the other two, and consequently is the largest in 
absolute value. In  view of (3.14), it  is important to single out this component (for each 
triad) in order to understand the exchanges of energy among the different components. 
The second of equations (3.15) implies that the component with largest value of I uI , 
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'0 
F I O ~  2. Inbraation coefficient I' and frequencies for the triads of figure 1. These variables 
have been non-dimemionelized using and the wavenumber of the component with largest 101, 
i.e., K,. The ex- are those of figure 1. 

say, wave 3, is the one with intermediate value of x-slowness (which is not neceamrily 
equivalent to intermediate value of phase speed along z), i.e. 

lei > 1~:31, > 0. (3.16) 

For instance 

(3.17) 
[-1,0] if s3=s1, 

[ - a, - #I 
[O ,  -11 if 8, = s2. 

if 83 = t ( s 1  + 4, 

4. Resonant triads 
If E is 'small', the evolution of the system is controlled, to a first approximation, 

by the linear part of (3.9); i.e. Z,(t) - ZJO) exp ( - h a t ) .  But then any two com- 
ponents, say, 1 and 2, will modify the evolution of other components (two for BRW 
and four for IGW) acting as a forcing in the right-hand side of (3.9). For instance, a 
componentwith k, = - k,- k2'feels'aharmonicforcingwithamplitude~*Z~(O)Z~(O) 
and frequency - w1 - 0,. This action is expected to be more important if the forcing 
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w , l N  

I I 
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Wi lN  

FIQURE 3. Resonant triads of Internal Gravity Waves on a vertical plane in the (wl, wI)  space 
(w, = - w1 -us). The four claflses differ in the sign of one of the vertical wavenumbers. Four 
additional classes BSB obtained c h a n e g  the sign of the three vertical wavenumbers. All possible 
triads are obtained by multiplying the three k by any real number. The region shown corresponds 
to the ordering w1 6 us < -w,. 

frequency coincides with w3, i.e., if the three waves satisfy the resonance condition 
(Phillips 1960) 

w,+w,+w3 = 0. (4.1) 

A more elegant introduction of the concept of resonant triads is usually made with 
a multiple time-scale analysis (see, for instance, Bretherton 1964). This analysis can 
certainly be made starting from the evolution equation (3.9), since it is valid for 
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I I I  111 IV 

FIGURE 4. Interaction coefficient r and value of K, and K,, non-dimensionalized using the 
Brunt-Vaisalii frequency N and the value of K ,  (each K has the magnitude of lkl and the sign 
of the rightward phase-speed). The axes are those of figure 3. 

motion of any amplitude. A discussion on the limitations of the weak-interactions 
approximation (which considers only resonant triads) can be found in Holloway & 
Hendershot (1977), Orlanski & Cerasoli (1980) and Holloway (1980). 

Conservation of E and P yield Hasselman's (1967) factorization of the coupling 
coefficients of a, resonant triad, namely, if equations (3.11) for (abc) = (123) and (4.1) 
are valid, then 

a!3/L3/01 = a;p2 = u;2//w3 = r123, (4.2) 

which follows from the fact that (3.15) is still satisfied replacing the a, by the w,. 
Equations (3.16) and (4.2) then show that for a resonant triad the component with 
intermediate value of s, has maximum value of IwI. The expression for the evaluation 
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of the interaction coefficients I’ (which have dimensions of slowness) is given in 
table 2. 

The properties of all resonant triads are shown in figures 1 and 2 for non-divergent 
( K R  = 0) BRW and in figures 3 and 4 for IGW. In  both cases, component 3 is chosen 
to be the one with intermediate x-slowness (or, due to the resonance condition, the 
one with the largest absolute frequency). Thus, without any loss of generality, the 
figures expand the region 

I K ,  Q K3 Q K ,  (BRW), 
~1 Q w2 Q -wg (IGW). 

(4.3) 

The results are presented in the (al, a,) plane for BRW (where a, is the angle opposite 
to k, in the triangle formed by the three k’s), and in the (wl,w,) plane for IGW. 
Typical triads, scattered in the regions defined by (4.3), are shown in figures 1 (BRW) 
and 3 (IGW). The value of K, and the frequencies (wavenumbers) are shown in figure 
2 (figure 4) for BRW (IGW). All variables have been scaled using K ,  and /3 (BRW) or 
N (IGW). 

The interaction, (3.11), and resonance, (4.1), conditions are easily satisfied in the 
following way. 

(a) For BRW itisa, = n+6,-6,(abc = 123+cp)inordertosatisfy(3.11), andthe 
resonance condition then reduces to 

tan 6, = [cos 2a3 cos ( a1 - a,) + cos a,]/[ 2 sin ( a1 - a,) sin2 aJ . 
(b) For IGW, given the three frequencies it is 6, = 1,cos-l (w, /N)  (with 1: = l), 

and, in order to satisfy (3.1 l),  it  is K ,  + sin (6,-6,) (abc = 123+cp). The four classes 
of triads shown correspond to different choices of [Zl,Z2,Z3], namely I: [ + - -1, 11: 
[ + - + 3, I11 : [ - - + ] and IV : [ - - - 3. For classes I and I1 the three waves propagate 
in the same horizontal direction, and are therefore similar to BRW in the sense that 
the component with largest IwI has intermediate IkJ. For classes I11 and IV, on the 
other hand, this is not true because the component with smallest IwI propagates in a 
direction opposite to the other two. 

‘Most’ triads in figures 1-4 have comparable wavenumbers and frequencies. 
However there are non-local triads, in K or w space or both, that fall into three 
categories, namely 

s), = -sc, u b  = 0, = -&ma (IGW; a = 3), ( 4 . 4 ~ )  

‘sb = so s,.i?w,/i?k, = 1 (BRW, IGW; u = l) ,  (4.4b) 

The limit (a), at the lower right boundary of classes I11 and IV of IGW, is the trapeze 
instability (or parametric instability) region predicted by Orlanski (1973). 
In the limit (b), at the leftmost boundary of BRW and classes I1 and I11 of IGW, 

the resonance condition expresses that the most efficient interactions are among short 
and fast wave packets travelling along a constant phase line of a long and slower 
wave. For IGW, this is the region of induced diffusion of the McComas & Bretherton 
(1977) analysis. 



100 P. Ripa 

Finally, in the limit (c), at the rightmost boundaries for BRW and leftmost boundary 
for IGW of classes I1 and 111, waves b and c differ only by a reflexion on a plane per- 
pendicular to k,. Wave a is quasi steady and its wavenumber is twice the wavenumber 
of the other two in the direction of k,. For the case of IGW, this is the elastic scattering 
region of the analysis of McComas & Bretherton (1977). 

The scaled interaction coefficient is everywhere of order unity, i.e. (see table 2) 

Irl laal (IGW;BRW,K, = 01, (4.5) 

The I? = 0 values in the figures correspond to s1 = a2 = a3, for BRW and IGW of 
classes I and 11, or to parallel k's for IGW of class IV. Note that use of lkll or lk21, 
instead of I k3J , to scale I' would have produced a misleading value of zero in the limit 
(4.4a), or a value of infinity in the limit (4.4b). Thus, the scale for the interaction 
coefficient is given by the intermediate x-slowness. 

The interaction coefficient for BRW much larger than the deformation radius is 
considerably smaller, namely 

Irl 1831 (Ks/Kd2 (BRW, Ka 4 K R )  (4.5)' 

as can be shown from the formulae in table 2. 
Equations (4.5) and (4.5)' somewhat simplify the picture of nonlinear interactions 

in the sense that most of the information on the parameters of the resonant terms in 
(3.9) is contained in the dispersion relation. Moreover, (4.5) and (4.5)' can be used to 
estimate the order of magnitude of the coupling coefficients of any triad (resonant or 
off-resonant), in the following way: 

Given three components that satisfy the interaction condition (3.11) (but not 
necessarily the resonance condition (4.1)), let 3 be the one with intermediate value of 
8 (but not necessarily with the largest Iwl) .  The three coupling coefficients associated 
with this triad are invariant under the rotation 8, --f 8; = 8, + 88 (see table 2) because 
(3.11) requires K ,  = sin (8, - OJ, abc = 123 + cp, and there are two values of 88 (that 
differ by T )  such that the rotated components are in resonance. Equations (4.5) and 
(4.2) then imply uj2 2: K3cos8;, and furthermore it is lcos8;I > (COS~; , ,~ .  Conse- 
quently, it is 

lci21 21 IK31 (IGW;BRW,K - 0 
(4.6) lui21 2: K{/K3R (BRW,K, < KR). - ),I 

That is, given any triad (resonant or not) the coupling coefficient corresponding to 
the component with intermediate 2-slowness is of the order of magnitude of its total 
wavenumber. The other two coupling coefficients are given by (3.15) (see also (3.17)). 

5. One-wave and three-wave problems 
In  this section the formalism developed in $3 is used to study two simple problems: 

one-wave (and its linear stability analysis) and three-wave systems. One single wave 
was shown to be an exact nonlinear solution. To study its stability, an infinite number 
of other components are considered, but (3.9) is linearized in this perturbation, 
violating the conservation laws. For the three-wave problem, on the other hand, (3.7) 
is truncated to the minimum number of (physical) components which exhibit non- 
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FIGURE 6. Isolines of potential vorticity (total density) for one Rossby wave (internal gravity 
wave). As the pattern moves in the x direction, the fluid particles stay in one of the isolines by 
means of displacements perpendicular to k; i.e. the trajectories are straight lines (with 8 slope 
= - 1  in the co-ordinates of the figure). The top, middle and bottom graphs correspond to 
max (a) = 0.2, 1.0 and 1.6, where u and l/s are the particle velocity and phase speed in the 2- 
direction. 

linear behaviour, but all the corresponding nonlinear terms in (3.9) are kept (which 
was already shown to preserve conservation of E and P ) .  

Properties of one wave 
One single wave, for example, 

Za(t) = Z,(O)exp( -ir.o,,(t)), Za(t) = 0 for b =I= a,  (6.1) 

is an exact solution of (3.9) because any coupling coefficient of the form Ga and Ga’ 
vanishes, owing to the sum rules (3.16). 

A non-dimensional amplitude of the wave can be defined as the ratio of the maximum 
particle speed to the phase speed along 2, namely? 

2Ka(*a + G)* E*//? (BRW), ( 5 . 2 ~ )  

(2K2,E)”N W W ) ,  (5.2b) 
M = 1Sal v = 

where V is the maximum value of the speed IvI, produced by the wave. 

t For non-divergent BRW ( K R  = 0)  this coincides with the quantity M used by Gill (1974). 
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The isolines of potential vorticity (BRW) ortotaldensity (IGW) areshowninfigure 5 
for different values of M Isin 6’1 (i.e. the ratio of the maximum particle x-velocity over 
phase speed along 2). 

The average momentum vanishes, whereas the pseudo-momentum does not. In  fact, 
the particle positions are given exactly by the equation 

(5.3) 

(where x‘ is the equilibrium position), which shows that, unlike the irrotational case, 
there is no mean drift. This is then another example of the difference (already pointed 
out by Andrews & McIntyre 1978) between momentum and pseudo-momentum. 

One single wave is a rather trivial solution of (3.9), because the nonlinear terms 
vanish for all values of M. The simplest nonlinear problem one can study is the stability 
of that wave, i.e., writing 

with E’(0) 4 E,(O), to consider the question whether component ‘a’ might release a 
finite amount of its energy to other components. A necessary condition, due to the 
conservation of PIE, is that the wave expansion of 6’ must contain components with 
values of s both larger and smaller than 8, (see point 1 after (3.15)). 

The usual procedure (Gill 1974) is to linearize (3.9) in #’ and seek eigensolutions 
such that E‘(t)  = E’(0) lexp (2pt)l. The ‘perturbation’ #’ is then formed by all com- 
ponents whose wavenumbers differ by a multiple of k,, and the growth rate p is found 
by solving for the root of an infinite-order determinant. Approximating this root by 
that of a 2 x 2 determinant, we find that 

(5.5) 

corresponding to wave ‘a’ interacting only with waves ‘b’  and ‘c’, with the three 
wavenumbers related by (3.11). Although (5 .5)  might not be a good approximation 
for the growth rate, it  illustrates three important points. (a) For instability (p2 > 0 )  
it is necessary that the product of the two coupling coefficients be positive, i.e. that 
8, be between s, and s, (see (3.16)); already mentioned to be a consequence of the 
conservation of E and P. (b) For a given eigenfunction, there might be a threshold of 
E, for instability, as suggested by the second term on the right-hand side of (5.6).  
(c) The maximum growth rate is proportional to &. 

In  the weak-interactions limit (B, -+ 0), (5 .5 )  is asymptotically correct (Gill 1974), 
and wave ‘a ’ is seen to be unstable for any amplitude if it belongs to a resonant triad 
and point (a) of the last paragraph is satisfied, which was shown in the last section to 
imply I w , ~  2 (Wb,c l .  It is clear then that all BRW or IGW with w + 0 are unstable, 
even in this limit, because they are the intermediate x-slowness component of many 
resonant triads. Use of (4.5) in (5.5) shows that the maximum growth rate is propor- 
tional to the wave amplitude M and frequency w. In  fact, taking the maximum of 
(5.5) over all resonant triads, the maximum growth rates corresponding to the extreme 
orientations of wave ‘a’ are found to be 

0.3248 M1w,1 (IGW, ( 5 . 6 ~ )  
(BRW, KR = 0), (5.6b) 

0*0833Ml~ , l  Pa/FR (BRW,KR 9 K,),  (5 .6~)  

x = x’ +MI kl-l(tan8,l) cos (k.x’ - wt), 

# = (za#a+#’)+*, (5.4) 

pL2 21 CEa&Ea - #(O, -k wb -k W,)’; 
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(5.7a) 

pmex = 04496 Mlwal (BRW, KR = 0), (6.7b) 

(5 .74  

for [E, + 0, 0, + n/2]. Thus, the non-dimensional amplitude, defined by (5.2), is 
approximately equal to the ratio of the linear, 12n/w1, to the nonlinear, (l/p), time 
scales. 

For very long BRW, though, M is of the order of the ratio between p and w, K:/Kk, 
instead of w,. But these waves are almost non-diversive (with a zonal phase speed 
approximately equal to -p /PR) ,  and w a P a / P R  is precisely the dispersive part of 
the frequency. For quasi-non-dispersive BRW, then, the relevant linear time scale 
is the (Doppler shifted) period measured by an observer that moves with velocity 
- B/K& along x.  

The quantity I = ((A$/N)a+ (V7,99/2 that Milder (1976) showed to be conserved 
in the linear IGW problem (already mentioned in 0 2) has the wave-expansion repre- 
sentation I = Z’siE2, (for a single wave it is I = Ma/2). However, it is easy to show 
(using its wave representation and (3.14)) that I is not conserved in the nonlinear 
problem, even allowing for only resonant interactions (on the other hand, any function 
of the 2, is an ‘integral of motion’ in the linear problem). For instance, for the system 
of a wave decaying by means of the trapeze instability mechanism (see (4.4a)), the 
value of I increases indefinitely with time, even though the system may be tending 
to a saturation state (Orlanski & Cerasoli 1980). 

In the strong-interactions limit (E, + a), on the other hand, the linear terms in 
(3.9) are negligible, and therefore the values of ,u are independent of 0, (because the 
coupling coefficients of each triad depend only on the relative orientations of the 
three k’s). The approximation (5.5) is no longer valid in this limit, and the values of 
p can be calculated solving for the roots of the infinite determinant (see Gill 1974) in 
an iterative way. The maximum growth rates are found to be 

0.2697 lkal V (IGW), (5.8a) 

pmsx = O*26971ka1 V (BRW,K, = 0), (5 .8b)  

( 5 . 8 ~ )  

for [E, .+ co, any O,], where V, as before, is the maximum of Ivl. For comparison 
with (5.6) and (5.7), note that (5.2) implies 

I 075M1wal KB,/Ki (BRW,KR B K,), 

I 0.1833 lkal VPa/K2,  (BRW, K ,  % K,), 

The weak- and strong-interaction limits correspond mathematically to M 3 0 
and M + co. However, from a physical point of view, one would like to have an idea 
about when some value of M can be considered ‘small’ or ‘large’: some boundary in 
(M, 0 )  space is needed to separate weak and strong decay. A good candidate is 

for the following reason. 
For M lain01 < 1 (e.g. the top panel of figure 5 )  the restoring mechanism, i.e. the 

meridional (vertical) gradient of potential vorticity (total density), for the case of 
BRW (IGW), has the same sign everywhere. The effect of the wave on the perturbation 

M Isin81 = 1, 
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is to alter its natural frequency by an amount of O ( M )  (which, in particular, can be 
complex, leading to instability of the wave). For M Isin01 > 1 (e.g. the lower panel 
in figure 5), on the other hand, the perturbation does not ‘feel ’ a restoring mechanism 
everywhere in the fluid. The value M [sin 81 = 1 corresponds to the onset of inertial 
(gravitational) instability of BRW (IGW); and also coincides with Orlanski’s (1971) 
criteria that the maximum particle x-velocity equals the phase speed in that direction, 
since 

M Isin 01 = max (su). (5.10) 

Furthermore, a w = 0 ‘wave’ (i.e. the limit of the expressions in table 2 when 
cos 19 --f 0) cannot be unstable in the weak-interactions limit, because conservation of 
E and P would require it to be the member of a resonant triad with maximum IwI ,  
which is clearly absurd. It is easy to show that this ‘wave ’ is unstable only for M > 1. 

The three-wave problem 

The problem of the stability of a single wave gives the nonlinear time scale (1/p) and 
the properties of the energy exchange among the components of an hypothetical 
system with most of the energy initially in one wave. The solution, though, is clearly 
not valid after a time t such that E’(0) exp (2pt) E E,(O) (or IP’(0)J exp ( 2 t )  N (Pa(0)\, 
whichever happens first), because the interaction among the components of 4‘ becomes 
important. A clear indication of this is that linearization in 4’ violates conservation 
of E and P .  

For a ‘simplified’ system obtained by an arbitrary truncation of (3.7) to N (physical) 
components, however, E and P are conserved if all nonlinear terms involving these 
components are kept in (3.9). The simplest case is obtained for N = 3 (Bretherton 
1964), namely 

if+iwiZi = uizjZ;,  (5.1 1 )  

where (from now on) i jk = 123 + cyclic permutations, and the upper indices of the 
coupling coefficients are omitted for simplicity. 

Equation (5.11) is obviously an extreme simplification of (3.9) and can only be 
justified for a finite time and for problems in which initially most of the energy is in 
a resonant (or quasi resonant) triadt (Bretherton 1964). Nevertheless, a particular 
solution of (5.11) found by McGoldrick (1965) (equation (5.23) below) is often quoted 
in the literature, because even a very simple problem like (5.11) might illustrate part 
of the dynamics of more complicated systems. Furthermore, a system like (5.11) may 
be found in quite different nonlinear problems of geophysical fluids. For instance, 
Craik & Adam (1979) use (5.1 1 )  with a resonant triad of capillary-gravity waves in a 
three-layer fluid in order to explain the nonlinear ‘explosive’ instability of a system 
which is linearly stable. 

The general solution of (5.11) (for any initial condition and for both the resonant 
and off-resonant cases) is reported here. Its properties are discussed for problems 
where the coupling coefficients satisfy (3.15), or more generally, where all the d s  do 
not have the same sign. However, the general solution of (5.1 1 )  for problems like that 

t It is also necessary for the pair formed by one of the three components and the conjugate 
of one of the other two not to be in resonance with a fourth wave. This is true for almost every 
triad in figures 1-4. 
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El 
FIGURE 6. Evolution of the three-wave system in energy space. Conservation of total energy 
requires the system to move over the triangle. Conservation of total 2-pseudomomentum oon- 
strains the evolution to a straight line in that triangle; several of those lines are drawn and labelled 
by the parameter rn’. The third conservation law (5.15) usually restricts the trajectory to  be a 
shorter segment of that line. Component 3 is the one with intermediate 2-slowness; for a resonant 
trio this is also the one with maximum IwI . 

of Craik & Adams ( 1  979) (which corresponds to the three d s  with the same sign) is 
the one reported in this section, in a different range of the parameters. 

The system (5.11) can be rewritten as 

A?$ = 2c,(E1 E2 E3)* cos 8, (5.12 a)  

wi = wi - ai(E, E,/E,)* sin 8, (5.12 b) 

where 6 = arg (Z1Z,Z3) is the relative phase and w; = - d  (arg Z,)/dt are the instan- 
taneous frequencies. Periods when the relative phase is close to 0 or rn correspond to 
maximum energy exchange and minimum departure from the ‘free ’ frequencies; 
whereas the converse is true when the relative phase is close to k &T. The solution 
found by McGoldrick (1965) corresponds to an initial condition such that sins or 
one of the energies vanishes, and is only valid in the strictly resonant case, i.e. for 
s2 = 0, where 

Q = ~ 1 + ~ 2 + 0 3  (5.13) 
is the detuning of the trio. 

The system (5.1 1) has three integrals of motion. On the one hand, equations (3.15) 
imply 

E = El + E, + E, = constant, 

P = s1 El + s2 E ,  + s8 E, = constant, 

Ai - A, = constant, 
or, more generally, 

( 5 . 1 4 ~ )  

(5.14b) 

(5.14)’ 

where A, = Eiaja,. For, and only for, a resonant trio, (4.2) implies that the Ai are 
proportional to the ‘wave-actions ’ E,/wi .  
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On the other hand, it is easy to show that (Bretherton 1964) 

S = U ~ U ~ U , ( E , E , E , ) ~ ~ ~ ~ S + S Z ~ A , / ~  = constant. (5.15) 

The physical consequences of the three conservation laws can be seen as successive 

(i) ( 5 . 1 4 ~ )  implies that the system evolves in a triangle in energy space (see figure 6). 
(ii) (5.14b) defines a straight line in that triangle. This line is labelled by the 

parameter 
m' = 2(A1-Az)/(2A3-AAl-Az+ lAl-A21) (5.16) 

that ranges from - 1 to 1. The line is infinitesimally small if most of the energy is in 
component 1 (m' 21 - 1) or 2 (m' 21 l), and the largest of those lines (m' = 0) goes from 
[El = E, = 0, E, + 01 to [,!#,az = Ezul, E, = 01. The components are numbered so 
that sign(a,) = sign (az) = -sign (a,) (which, with (3.15), means that a3 is between 
81 and 8,). 

(iii) If Q = 0 and sins =+ 0 at t = 0, (5.15) constrains even further the evolution 
along this line (because I sin 81 Q l), and the three phases are somewhat locked (because 
sins cannot change sign). If R =+ 0 and the initial energies are small enough so that 
the f i s t  term in the right-hand side of (5.15) is negligible, then Ei(t) 2: E,(O) (i.e., the 
detuning inhibits energy exchange), because (5.14) and (5.15) represent three con- 
straints on the three energies. 

The integrals of motion can be used to define two other parameters that, together 
with m', fully characterize the solution: a nonlinear inverse time scale po given by 
(A 2a), and another non-dimensional parameter m given by (A 4b). The parameter 
,uo is a function of E and m', and satisfies 

IPoI Ig$*I- (5.17) 

The parameter m, which is a measure of the energy exchange (see (5.19) below), is 
a function of E, m' and 8; end it has, roughly, smaller values for larger values of IS]. 
The range of m is 

O < m <  l- lm'l .  (5.18) 

constrains on the energy exchange. 

The solutions of (5.12) take the form (see appendix) 

E,(t) = p2(m sn2pt - &)/aj ak, (5.19) 

where sn(. . .)is the Jacobian elliptic sine (Abramowitz & Stegun 1966, chapter 16) with 
parameter m, and the parameters ,u and hi can be easily calculated from any initial 
condition (see appendix). For m < 1 ,  sn,(u) is a periodic function of u, which varies 
between 0 (for u = 0, k K(m),  & 2K(m), . ..) and 1 (for u = k K ( m ) ,  & 3K(m), ...). 
K(m) is the elliptic integral of the second kind, which is equal to 7rl2 a t  m = 0 and 
slowly tends to infinite as m + 1. In  particular it is sn(.. .) = sin (...) for m = 0 and 
an(. . .) = tanh (. . .) for m = 1.  

Finally,replacing (5.15), (5.19)and (A 2c)in (5.12b), the 'instantaneousfrequencies' 
are found to be of the form 

w; = wi - 8 1 2  +pBi/(m snz,ut - At), (5.20) 

where the Bi are constants of order one. The last two terms on the right-hand side 
can be decomposed into a mean value (frequency shift) plus a periodic fluctuation 
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FIGURE 7. Typical solution for a resonant triad and for negative values of m'. Real (z,) /v is 
plotted against time. The free frequency of each component is shown between parenthesis on the 
left. (a) p = 0.025, m' = - 0.80, m = 0.20; (b)  p = 0.025, m' = - 0.80, m = 0.10; (c) p = 0.020, 
m' = -0-40, m = 0.60; (d) p = 0.020, m' = -0.40, m = 0-29. 

(frequency modulation). This equation can also be integrated in terms of the elliptic 
integral of the third kind (Abramowitz & Stegun 1966, chapter 17) in order to find 
the evolution of the individual phases. 

The properties of all possible solutions in the resonant case (a  = 0) are presented 
now, leaving the discussion of detuning eflects to the end of this section. 

Solution of the resonant w e  
Typical solutions of (5.11) are shown in figures 7-9 for different values of m' and rn, 
scattered in the region of (5.18). The three frequencies are equal to 0.26, 0.47 and 
-0.73, the value of p is, in all cases, approximately equal to 0.02 and the elapsed 
time is equal to 250 in the inverse of the (arbitrary) unit of the frequencies. Only the 
real part of the amplitudes Zi is shown, and it is scaled with v = l/I' (see (4.2)). 
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F1~~~~8.Asinf igure7forpos i t ived.  (a)p = 0.021;nz' = 0.80,m = 0.20;(b)p = 0*02O,m'= 0.80, 
m = 0.10; (c) p = 0.019, m' = 0.40, rn = 0.60; (d )  p = 0.019, m' = 0-40, m = 0.29. 

The parameters of the examples of figures 7-9 are shown as small circles in the 
[m, m'] plane in figure 10. Also in that figure are indicated the properties of the solution 
at the boundaries (m = 0 or 1 - Im'l) of the parameter space, which are the following. 
(a) For m = 0 (bottom boundary of the triangle in figure 10; this corresponds to 

a maximum value of 181, given E and m') the three energies are constant, (5.19), and 
the three frequencies are also constant but shifted from their free values by an amount 
of O(,u,). This solution is obtained for (see ( 5 . 1 2 ~ ~ ) )  sin8 = f 1 and, to preserve the 
value of 6, for (see (5.12b)) Xvai/Ei  = 0, which implies (see (3.15)) 

E, = Eo/(I + UOSJ, (5.21) 

where E, and U, are constants. The shifted frequencies are given by 

w; = (1 f E ) W i & € k i U O ,  (5.22) 
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E’IGTJRE 9. As in figure 7 for m’ = 0. (a) p = 0.017, m = 0.99; (b)  p = 0.019, m = 0.59; 
(c) p = 0.018, m = 0.29; (d)  p = 0.018, m = 0.02. 

(with e = I’(E,E,E,)~/E,) and satisfy Xwi  = 0. The example in the right bottom 
graph of figure 9 (m’ = 0,m = 0.02) corresponds very closely to this case (since the 
maximum value of m, for m’ = 0, is 1). 

Incidentally, (5.2 1) also gives the equilibrium solution of the Boltzmann equation 
for stochastic systems (Holloway & Hendershott 1977). 

(b) For m = 1 - 1m’l (upper boundaries of the triangle in figure 10; this corresponds 
to S = 0), on the other hand, the solutions experience the maximum energy exchange 
compatible with conservation of E and P (for example, for m < 1, two of the energies 
vanish alternatively) while the frequencies remain constant at their free values, and 
the relative phase is such that sins = 0. The examples corresponding to this other 
extreme case are the two to the left in figures 7 and 8 and the one at the top left in 
figure 9. 
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FIGURE 10. Properties of the solutions for the three-wave resonant problem for the extreme values 
(0 and 1 - 1.2'1) of the parameter m. Any point in the interior of the triangle represents also a 
possible solution. The values of (m, m') for the examples of figures 7-9 me shown as small circles. 

For m' < 0, the parameters of the solution are A, = 1, A, = m, A, = 0 and 

p == ~ 3 [ E w 1 w , / ( w f + m w : +  ( 1  +m)wlw,)l'. 

The amplitudes are given by 

Z ,  = [w1E/(wl+mw2)]*dn(pt)exp ( - iwlt) ,  

2, = [w,mE/(w, + mw,)]4 cn(pt) exp ( - iwt), 

Z ,  = [ - w,mE/(w, + mw,)]+ sn(pt) exp ( - iw,t), 

( 5.23 a) 

(5.23b) 

(5.23 c) 

times any constant phase factors (constrained by sin8 = 0). This particular solution 
is the one found by McGoldrick (1965) and is often quoted in the literature. 

For m' N 1 (lA1l > IAz,,l),m = 1 +m',  there is a catalytic exchange of energy be- 
tween components 2 and 3, (2  o 3), in the sense that El remains essentially constant. 
The presence of component 1, however, is very important in determining the nonlinear 
time scale, since in this limit it is p2 N a,a,E,. This case is shown in the top left of 
figure 7. For a system such that w1 = 0 it is always m' = - 1 and m = 0, i.e. this is the 
only possible solution of the problem. 
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For a value of m' between - 1 and 0 (bottom left of figure 7) E, no longer stays 
constant. At t = 0 the process looks like the resonant generation of 2 by the interaction 
of 1 and 3, (1 + 3  + 2); then half an energy period later (t  = R(O*6)/p N 97) the 
process looks like (1 + 2 + 3). There is not a clear distinction between this case and 
the one discussed before, as in fact the properties of the solution vary continuously 
throughout parameter space. 

The examples with m' > 0 (graphs on the left of figure 8) are like the ones just 
discussed, but the roles of components 1 and 2 are interchanged. 

Finally, for m' N 0 and m -N 1 (top left of figure 9) the process looks like the decay 
of the unstable component, (3 + 1 + 2), followed by its resonant regeneration, 
(1 + 2 + 3); and so on. Note the increase of the nonlinear energy period as m + 1. 
For m strictly equal to 1 ((5.26) below, with SZ = 0) this period tends to infinity and 
the whole process (from t = - co to + co) is (3 + 1 + 2) followed by (1 + 2 -+ 3), just 
once. 

(c) For an intermediate value of m, between 0 and 1 - Im') (interior of the triangle 
in figure 10; this corresponds to an intermediate value of ISJ), none of the energies 
ever vanish, and the instantaneous frequencies are not constant (i.e. there is a fre- 
quency modulation). The examples corresponding to this case are the two graphs on 
the right in figures 7 and 8, and the top right and bottom left in figure 9. 

Detuning effects 
The main effect of the detuning, Q + 0, is to  inhibit the energy exchange. Its importance 
is measured by the magnitude of 

sz' = n/2po. (5.24) 

As l Q ' l +  00 (very low energies) it is m - O(a'-3), or m - O(CP4) if one of the 
energies initially vanishes, and lpl N QI . The three energies remain essentially 
constant and the instantaneous frequencies are shifted by an amount of O(po). The 
value I Sz'l = 1 is roughly the boundary between resonant and off-resonant regimes. 

For instance, if initially E, (near the apex in figure 6) then it is 

m' = 0, pi = glu2E3, p = pol 1 - SZ'21) 
and 

(5.25) 

Therefore, component 3 will decay into components 1 and 2 only if its energy is 
high enough so that I Q' I < 1. In  this case, the amplitudes are given by 

Zi = [( Q'2 - 1) Eu,/u,]i sech (pt)  exp [ - i(wi - &I) t ]  

Z, = E[  ( 1 - Q'2)6. tanh(pt) + in'] exp ( - iw, t ) .  
(i = 1,2), } (5.26) 

Note that component 3 releases energy to components 1 and 2 (for - co < t < 0 )  and 
then gains it back (for 0 < t < 00). However, unlike the resonant case, component 3 
does not loose ell of its energy; its minimum energy being min (E,)  = RP2E = Ra/4u, u2. 

As another example, starting a t  the other end of the m' = 0 line in figure 6 
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it is CP = (1  - Jm)z/,/m, p2 = p;/Jm and 

(5.27) 

Thus for component 3 to gain at least half of the total energy, it is necessary that 
I Q'l < 1/42. For I Q'l = 1/42 it is m = & and the maximum of E ,  is reached in a time 

If the total energy is large enough so that Q' - 0, then (5.26) and (5.27) tend to the 

I E,(t) = E,(O) (1  -4msn2,ut) (i = 1,2) ,  

E3(t) = [(E,(O) + EZ(0)l 4msn2pt. 

t = R(f)/42p0 = 1.1920/p0. 

solution of the resonant case, (5.23) with m = 1. 

6. Discussion 
The theory of nonlinear wave-wave interactions is revised here through the study 

of two different geophysical systems: barotropic Rossby waves (BRW) and internal 
gravity waves in a vertical plane (IGW). The main results are summarized below along 
with a discussion of their generality, i.e. a consideration of the necessary conditions 
for finding results similar to the ones found here, in other geophysical systems. 

First of all, the nonlinear evolution equation in ' components ' space is found with- 
out having to make the usual (and often cumbersome) multiple time-scale analysis 
or any other perturbation expansion. The simplicity of the method used in this paper 
represents an advantage over the perturbation expansion, especially for systems 
with many fields or represented by differential equations with non-constant coeffi- 
cients (see for instance Ripa 1980~). Moreover, the evolution equation developed here 
(which has quadratic nonlinearity) is an ezmt representation of the original model 
equations, i.e. there are no extra terms missing, and its use is not constrained to 
motion of small amplitude. 

The procedure is based on the use of the eigenfunctions of the linearized problem 
as a basis to expand the dynamical fields; thus, changing the description of the physical 
system from the dynamical fields to the expansion amplitudes, Z,(t). No assumption 
is made about the magnitude of fields (because the linearized equations are only used 
to provide the expansion basis), and the method is greatly simplified by the ortho- 
gonality of the expansion functions. A crucial property, even for the linear problem, 
is the completeness of the expansion basis, in order to make the representation in terms 
of the Z,(t) exact. Both properties are related to the hermiticity of the model equations; 
with a metric defined by the energy integral. 

The same procedure can be applied to other geophysical systems as long as they 
have similar hermitian properties (Ripa 1 9 8 0 ~ ) ;  which is usually found to be true in 
the Eulerian description. Apparently, it is not possible to write the Lagrangian 
equations in an explicitly hermitian form, which is unfortunate because this seems 
to be the natural description for nonlinear problems with a free boundary, including 
the important case of surface waves. 

As second result, the conservation laws of the systems are derived and related to the 
symmetries of the Lagrangian model equations. Both systems have several conser- 
vation laws, which can be written in terms of three independent ones. ( 1 )  A property 
of each fluid parcel is conserved (potential vorticity for BRW and total density for 
IGW). This law is related to invariance under a general change of the label of the 
fluid elements (which is taken to be equal to their equilibrium position), and serves 
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to define the inhomogeneous co-ordinate (y). (2) Total energy (E) is conserved; this 
is related to invarianca under translations in time. The energy integral, which is 
positive definite, serves to define the metric in the space spanned by the linear eigen- 
functions. (3) Total pseudomomentum P along x is conserved; this is related to 
invariance under translations along that co-ordinate, both in position and label spaces. 

E and P are quadratic and additive functions of the amplitudes Z,, and their 
conservation has, in turn, some interesting consequences, namely: (a )  a generalization 
of Fjortoft’s theorem, in z-slowness space instead of Ikl space; (b) any combination 
of linear waves with the same phase speed along x (in particular, one single wave) 
turns out to be an exact solution of the full nonlinear problem; ( c )  E and P are still 
conserved after simplifying the system by means of some (arbitrary) truncation of 
the expansion basis (which is precisely what some numerical models do). 

For other geophysical systems, conservation of E and of the total pseudo-momen- 
turn pi along each homogeneous co-ordinate xi are also expected.? E and the P, should 
be, to the lowest order, quadratic and additive in the 2,; with the pseudo-momentum 
of each component equal to its slowness vector times its energy. However, E and the 
<. need not be exactly quadratic in the Z,, and the consequences (a)-(c) of the last 
paragraph may not be true for finite-amplitude motion. 

Take for instance the problem of IGW extended to 3 dimensions. The expansion 
set for this problem is divided into two classes: 3DIGW (which is the part of the motion 
with vanishing vertical vorticity) and sheared steady flow with vanishing vertical 
velocity. Both horizontal co-ordinates are homogeneous, symmetry related to the 
conservation of both horizontal pseudo-momenta. These are equal to 

where is the part of the horizontal vorticity due to the 3DIGW and r ]  is the isopycnal 
elevation. Finally, this system is also invariant under rotations around any vertical 
axis, which results in another conservation law, namely that of the total pseudo- 
angular-momentum, equal to (x. Cr])  + O(2:). 

As a third result, the properties of all resonant triads are shown, and used to esti- 
mate the order of magnitude of the coupling coefficients of all off-resonant triads. 
The scale of the latter is given, for each interacting trio, by the total wavenumber of 
the component with intermediate x-slowness. 

This information is used iq the stability analysis of a single wave in order to estimate 
the value of the maximum growth rate, resulting in 

,u Ikl I-ms IVI, (6.1) 

(where k is the wavenumber of the unstable wave) for IGW and short BRW. The 
value of ,u for BRW much longer than the deformation radius or low-frequency IGW 
or BRW is smaller than (6.1). The actual values of the maximum growth rates are 
calculated for BRW (much shorter or longer than the deformation radius) and IGW, 
in both the strong- and weak-interactions limits, and for the extreme orientations of 
the wave. The calculated growth rates are essentially given by (6.1). 

Finally, the complete solution of the three-wave problem is presented. In addition 
to the well known McGoldrick (1965) solutions with maximum energy exchange 

t Note that the conservation of the pseudo-momentum along some coordinate is broken by the 
presence of boundaries not parallel to that direction. 
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(valid only in the strictly resonant case), new solutions are found with constant 
energies and shifted frequencies. In  fact, these two sets of solutions are only extreme 
cases, since most solutions have properties ‘in between’ those of the former two, 
The nonlinear inverse time scale (for energy exchange) or the scale of the frequency 
shift is essentially given by (6.1) with k the wavenumber of the component with 
intermediate x-slowness. 

Thisgeneral solution is valid for both resonant and off-resonant cases, and is then 
used to show that the detuning inhibits energy exchange if it is larger than the non- 
linear inverse time scale. Furthermore, this solution is also valid (in a range of the 
parameters different than the one discussed here) for other geophysical problems like 
the ‘explosive’ instability of a three-layer flow (Craik & Adam 1979). 

A large portion of this work was done at the Geophysical Fluid Dynamics Labora- 
tory in Princeton, where I benefited from the encouragement and advice of I. Orlanski. 
Many colleagues were very helpful in reading the original manuscript. I am particu- 
larly grateful to Greg Holloway and Ned Cockelet in this respect. I am also grateful 
to Fernando Lund for many discussions, to Ingrid Quetermous for typing the original 
manuscript and to D. Doyle for drafting the figures. 

Appendix. Solution of the three-wave problem 
writing 

A,(t) = (Q),u$[cos (a’ - i2n/3) + C( t ) ] ,  (A 1)  

for i = 1,2 ,3;  the parameters on the right-hand side can be calculated as 

po = sgn (a,) [A? + AX + A: - A ,  A ,  - A ,  A ,  - A ,  A, ] ,  (A 2 4  

tana’ = 4 3  (A1-A,)/(2A,-A,-A,) 

= m‘2/(3)/(2 - lm’l), 

C(t )  = (A,  + A ,  + A3)/2p;. (A 2 4  

Both p, and a’ are constant, in virtue of (5.14)’; p$ may have values between 
(3)’ a,a,E and max ( - a,,,a,E), whereas the possible values of a’ are between - n/3 
(m’ = - 1) and n/3 (m’ = 1).  The parameter m‘, used in the main text, is practically 
equal to 3a’/n. Finally, C(t )  may take any value between - cos a’ and cos (la’ I + 7r/3). 

Equation ( 5 . 1 2 ~ )  can be transformed, using (5.15), to 

(C),/p$ + (AS” - ~ I ? R ’ ) ~  = (2/3) (cos 3a’ + 4C3 - 3C) (A 3) 

where S’ = 3S/p: and 0’ = R/2p0. 
The solution of (A 3) is of the form (see Abramowitz & Stegun 1966, chapter 16) 

C(t )  = C, + C,snpt. 

The problem is then reduced to finding C,, C,, ,u and the parameter m of the Jacobian 
sine from p,, a’ and S.  This can be done using (sn’u), = (1  - sn%) (1 - m s n b )  and 



Nonlinear wave-wave interactions 115 

equating the coefficients of the different powers of snzpt in both sides of (A 3) .  The 
solution is then given by (5.19) with 

cos3a = [3Sz-6SR’3+3~‘~-~’6-2cos3a’]/2~1 +R’4-2Q’5’1*, 

0 < a < 7r/3, 

m = 2 tan a/ (  J 3  + tan a) 

= pol  1 + a14 - 2nt8’14( 1 - wz + d)-t 

A, = (1 +m-[2cos(a’-i27r/3)+R’*]p~/p2}/3. 

(A 4 4  

(A 4 b )  

(A 4 4  

(A 4 4  

The parameter m is practically equal to 3 a / n .  For a resonant triad, SZ’ = O,p/po 
may have any value between 1 and (4 /3)*(  E 1.07). 
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